

Lab ID Patient ID PAT-100009 Ext ID 25304-0076

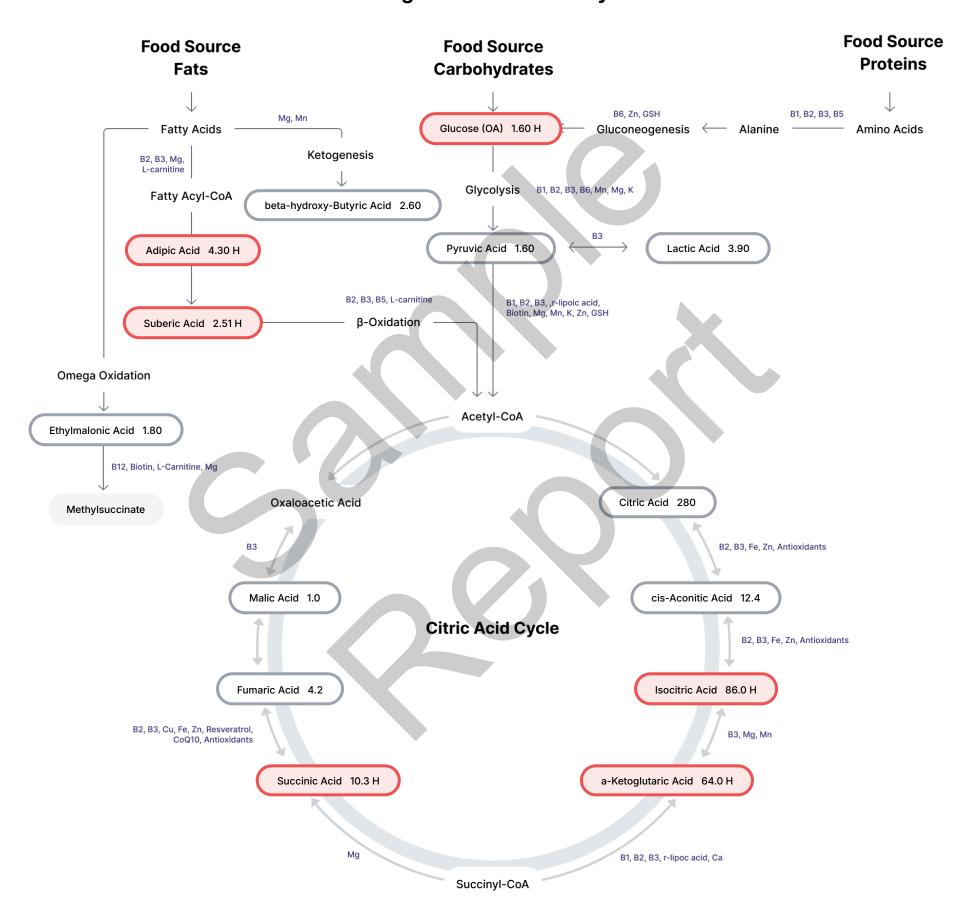
Test Patient

Sex: Female • 45yrs • 01-Jan-80

RECEIVED 31-Oct-25

Legend

Not Tested


Within Range

Out of Range

L = Low, LL = Critically Low H = High, HH = Critically High

Regulator

Organic Acids Pathway

 Lab ID

 Patient ID
 PAT-100009

 Ext ID
 25304-0076

Test Patient

Sex: Female • 45yrs • 01-Jan-80

RECEIVED 31-Oct-25

CARBOHYDRATES METABOLISM/Glycolysis

(B1, B3, Cr, Lipoic Acid, CoQ10)

TEST	RESULT H/L		REFERENCE	UNITS
1 Pyruvic Acid	1.60		(0.50-8.70)	mmol/molCR
2 Lactic Acid	3.90		(<48.00)	mmol/molCR
3 Glucose (OA)	1.60 H	•	(0.10-1.10)	ug/mgCR

KETONE/FATTY ACIDS METABOLISM

(Carnitine & B2)

TEST	RESULT	H/L		REFERENCE	UNITS
4 Adipic Acid	4.30	Н	•	(<3.80)	mmol/molCR
5 Suberic Acid	2.51	Н	•	(<2.20)	mmol/molCR
6 Ethylmalonic Acid	1.80			(<5.80)	mmol/molCR
7 Methyl-Succinic Acid	1.40		•	(<10.80)	mmol/molCR
8 Pimelic Acid	2.20		•	(<4.00)	mmol/molCR
9 alpha-hydroxy-Butyric Acid	2.85			(<6.90)	mmol/molCR
10 beta-hydroxy-Butyric Acid	2.60			(<3.10)	mmol/molCR

B-COMPLEX VITAMINS/AMINO ACID MARKERS

(B1, B2, B3, B5, B6, B12, Folate, Biotin)

TEST	RESULT	H/L			REFERENCE	UNITS
11 alpha-Ketoisovaleric Acid	2.3		•		(<4.1)	mmol/molCR
12 alpha-Ketoisocaproic Acid	0.4				(<0.7)	mmol/molCR
13 alpha-keto-beta-Methylvaleric Acid	1.1		•		(<2.0)	mmol/molCR
14 Xanthurenic Acid	3.30	Н		•	(<0.96)	mmol/molCR
15 beta-Hydroxyisovaleric Acid	6.7		•		(<29.0)	mmol/molCR
16 Methylmalonic Acid	3.7	Н		•	(<1.9)	mmol/molCR
17 Formiminoglutamic Acid	1.9	Н		•	(<1.5)	mmol/molCR

CITRIC ACID CYCLE METABOLISM

(B Comp, CoQ10, Amino Acids, Mg)

TEST	RESULT	H/L		REFERENCE	UNITS
18 Citric Acid	280		•	(40-507)	mmol/molCR
19 cis-Aconitic Acid	12.4			(3.5-36.0)	mmol/molCR
20 Isocitric Acid	86.0	Н	•	(5.0-65.0)	mmol/molCR
21 a-Ketoglutaric Acid	64.0	Н	•	(4.0-52.0)	mmol/molCR
22 Succinic Acid	10.3	Н	•	(1.0-9.7)	mmol/molCR
23 Fumaric Acid	4.2			(<8.6)	mmol/molCR
24 Malic Acid	1.0		•	(<1.8)	mmol/molCR

 Lab ID

 Patient ID
 PAT-100009

 Ext ID
 25304-0076

Test Patient

Sex: Female • 45yrs • 01-Jan-80

RECEIVED 31-Oct-25

TEST	RESULT H/L		REFERENCE	UNITS
25 3-Methylglutaric Acid	3.2	•	(<8.5)	mmol/molCR

NEUROTRANSMITTER METABOLISM

(Tyrosine, Tryptophan, B6, Antioxidants)

TEST	RESULT	H/L		REFERENCE	UNITS
26 Homovanillic Acid (HVA)	2.7		•	(0.1-5.3)	mmol/molCR
27 Vanillylmandelic Acid (VMA)	3.1		•	(0.4-3.6)	mmol/molCR
28 5-Hydroxyindoleacetic Acid (5HIAA)	2.9			(<4.3)	mmol/molCR
29 Kynurenic Acid	2.9	Н	•	(<2.2)	mmol/molCR
30 Quinolinic Acid	8.2		•	(<9.1)	mmol/molCR
31 Picolinic Acid	3.2			(<10.3)	mmol/molCR
32 Cortisol (OA)	48.0		•	(5.0-65.0)	ug/mgCR

OXIDATIVE DAMAGE/ANTIOXIDANT MARKERS

(Vitamin C, Other Antioxidants)

TEST	RESULT	H/L			REFERENCE	UNITS
33 Parahydroxyphenyllactic Acid	4.60	Н			(<3.90)	mmol/molCR
34 8-hydroxy-deoxyguanosine	2.90	Н		•	(<2.70)	mmol/molCR

DETOXIFICATION INDICATORS

(Arg, NAC, Meth, Mg, Antioxidants)

TEST	RESULT	H/L	REFERENCE	UNITS
35 2-Methylhippuric Acid	0.02		(<0.04)	mmol/molCR
36 Orotic Acid	2.55	•	(0.00-3.20)	mmol/molCR
37 Glucaric Acid	4.60	•	(<11.00)	mmol/molCR
38 Pyroglutamic Acid	15.70		(4.50-33.00)	mmol/molCR

BACTERIAL DYSBIOSIS MARKERS				
TEST	RESULT H/	/L	REFERENCE	UNITS
39 Benzoic Acid	7.70	•	(<9.30)	mmol/molCR
40 Hippuric Acid	231.0		(<603.0)	mmol/molCR
41 Phenylacetic Acid	2.10		(0.00-4.16)	mmol/molCR
42 Phenylpropionic Acid	0.60 H	•	(0.00-0.40)	mmol/molCR
43 ParahydroxyBenzoic Acid	0.00	•	(<0.57)	mmol/molCR
44 p-HydroxyPhenylacetic Acid	3.90		(0.00-14.60)	mmol/molCR
45 Indoleacetic Acid	6.90		(<11.00)	mmol/molCR
46 Tricarballylic Acid	0.34	•	(<0.44)	mmol/molCR

 Lab ID

 Patient ID
 PAT-100009

 Ext ID
 25304-0076

Test Patient

Sex: Female • 45yrs • 01-Jan-80

RECEIVED 31-Oct-25

CLOSTRIDIAL SPECIES						
TEST	RESULT	H/L			REFERENCE	UNITS
47 DiHydroxyPhenylPropionic Acid	6.80	Н		•	(<5.30)	mmol/molCR
48 4-Cresol	1.66				(0.00-1.70)	ug/mgCR
49 3-hydroxy-Propionic Acid	8.21		•		(<17.00)	mmol/molCR
YEAST/FUNGAL DYSBIOSIS MARKERS						
TEST	RESULT	H/I			REFERENCE	UNITS

YEAST/FUNGAL DYSBIOSIS MARKERS				
TEST	RESULT H/	L	REFERENCE	UNITS
50 Arabinitol	28.8	•	(<36.0)	mmol/molCR
51 Citramalic Acid	3.2		(<3.6)	mmol/molCR
52 Tartaric Acid	8.9		(<15.0)	mmol/molCR

OXALATE METABOLITES				
TEST	RESULT H/L		REFERENCE	UNITS
53 Oxalic Acid	13.8		(<78.0)	mmol/molCR
54 Glyceric Acid	4.1	•	(<6.0)	mmol/molCR
55 Glycolic Acid	20.3		(<67.0)	mmol/molCR

NUTRITIONAL MARKERS				
TEST	RESULT	H/L	REFERENCE	UNITS
56 Pyridoxic Acid (Vit B6)	5.7	•	(0.7-34.0)	mmol/molCR
57 Pantothenic Acid (Vit B5)	0.8	•	(0.1-10.0)	mmol/molCR
58 Glutaric Acid (Vit B2)	0.13		(0.02-0.36)	mmol/molCR
59 Ascorbic Acid (Vit C)	28.00		(0.50-200.00)	mmol/molCR
60 CoEnzyme Q10 (CoQ10)	1.10	•	(0.10-5.00)	mmol/molCR
61 N-Acetylcysteine (NAC)	0.08		(0.02-0.28)	mmol/molCR
62 Biotin (Vit H)	2.30		(0.10-15.00)	mmol/molCR
TEST	RESULT	H/L	REFERENCE	UNITS
Creatinine, Urine	8.00		(2.47-19.20)	mmol/L

 Lab ID

 Patient ID
 PAT-100009

 Ext ID
 25304-0076

Test Patient

Sex: Female • 45yrs • 01-Jan-80

RECEIVED 31-Oct-25

NUITRITIONAL CUIDE			
NUTRITIONAL GUIDE	P=0.11.=	LINUTO	
TEST	RESULT	UNITS	Clinical Notes
Vitamin-E	200.0	U	
Vitamin-B1	15.0	mg	
Vitamin-B2	17.0	mg	
Vitamin-B3	13.0	mg	
Vitamin-B5	10.0	mg	
Vitamin-B6	5.0	mg	
Glycine	5.0	mg	
Glutamine	0.0	mg	
Glutathione	50.0	mg	
Taurine	6.0	mg	
Tyrosine	0.0	mg	
Tryptophan	8.0	mg	
L-Arginine	0.0	mg	
Aspartic Acid	0.0	mg	
Acetyl-L-Carnitine	20.0	mg	
Biotin	0.0	ug	
Chromium	3.0	ug	
Coenzyme Q10	400.0	mg	
Calcium-D-glucurate	0.0	mg	
EPA/DHA	0.0	mg	
Iron	0.0	mg	
Folinic Acid	0.0	ug	
D-Lactate-free probiotics	1.0	billion CFU	
Magnesium	140.0	mg	
Manganese	0.0	mg	
Malic Acid	0.0	ug	
Methionine	6.0	mg	
N-Acetylcysteine	100.0	mg	
Ornithine	10.0	mg	
Vanadium	0.0	ug	
alpha-Lipoic Acid	200.0	mg	
Lysine	0.0	mg	
Lactobacillus	1.0	billion CFU	
5-hydroxy-Tryptophan (5-HTP)	0.0	mg	
Serine	5.0	mg	
Probiotics (Multistrain)	100.0	billion CFU	

 Lab ID

 Patient ID
 PAT-100009

 Ext ID
 25304-0076

Test Patient

Sex: Female • 45yrs • 01-Jan-80

RECEIVED 31-Oct-25

TEST	RESULT	UNITS	Clinical Notes
Phenylalanine	0.0	mg	
Vitamin-C	400.0	mg	

 Lab ID

 Patient ID
 PAT-100009

 Ext ID
 25304-0076

Test Patient

Sex: Female • 45yrs • 01-Jan-80

RECEIVED 31-Oct-25

Carbohydrate Metabolism Comment

GLUCOSE ELEVATED:

Oxidation of glucose is the major source of cellular energy in the body. Glucose derived from dietary sources is converted to glycogen for storage in the liver or to fatty acids for storage in adipose tissue. Glucose measurement in urine is used as a diabetes screening procedure and to aid in the evaluation of glycosuria, to detect renal tubular defects, and in the management of diabetes mellitus. Elevated levels should be confirmed with a fasting glucose blood test.

Supplementation Recommendations: Chromium, Vanadium, Insulin, Diabetic medication.

Citric Acid Cycle Comment

ISOCITRATE HIGH:

Isocitrate is the precursor to alpha-ketoglutarate in the Krebs Cycle. A high level is suggestive of inhibition to the enzyme by Aluminum. Supplementation Recommendations: Cofactors needed to increase the breakdown of isocitrate to alpha-ketoglutarate are: Vit B3, (NAD), Mg, Mn.

a-KETOGLUTARIC ACID ELEVATED:

a-Ketoglutarate is a key molecule in the TCA cycle, playing a fundamental role in determining the overall rate of this important metabolic process. In the TCA cycle, a-Ketoglutarate is decarboxylated to succinyl-CoA and carbon dioxide by a-Ketoglutarate dehydrogenase, which functions as a key control point of the TCA cycle. a-Ketoglutaric acid changes in direct proportion to urinary pH suggesting it may be a marker of pH imbalance.

Elevations can be seen with nutrient cofactor deficiencies needed for the enzymatic conversion of α ketoglutarate such as vitamin B3, zinc, magnesium, manganese.

SUCCINIC ACID ELEVATED:

Succinate has multiple biological roles including roles as a metabolic intermediate and roles as a cell signalling molecule. It links cellular metabolism, especially ATP formation, to the regulation of cellular function, and can be broken down or metabolized into fumarate by the enzyme succinate dehydrogenase, which is part of the electron transport chain involved in making ATP.

Elevated succinate may indicate a deficiency of Riboflavin and CoQ10. Succinate has also recently been identified as a possible endogenous, cancer causing metabolite at higher levels.

B-Complex Vitamins/Amino Acids Comment

XANTHURENIC ACID ELEVATED:

Xanthurenate is a metabolite in the kynurenine pathway of tryptophan degradation.

Elevations in urinary xanthurenate are seen with increased intake of tryptophan, and in high estrogen states. Pregnancy, oral contraceptive use and possibly diabetes, renal failure - are associated with elevated levels of urinary xanthurenic acid where a functional nutrient need for B-vitamins is pronounced.

Consider: Supplementation with B6.

Methylation Cofactors Comment

METHYLMALONIC ACID (MMA) ELEVATED:

 Lab ID

 Patient ID
 PAT-100009

 Ext ID
 25304-0076

Test Patient

Sex: Female • 45yrs • 01-Jan-80

RECEIVED 31-Oct-25

Methylmalonate is formed from propionyl-CoA via methylmalonyl-CoA. Major dietary sources of propionyl-CoA include valine, isoleucine, methionine, threonine, and odd chain fatty acids. methylmalonyl-CoA is converted into succinate via a B12 dependent enzyme Methylmalonyl-Co-A mutase.

Chronically high levels of methylmalonate are associated with at least 5 inborn errors of metabolism; but the most common cause is a B12 deficiency.

Consider: Supplementation with B12.

FORMIMINOGLUTAMIC ACID (FIGLU) ELEVATED:

Formiminoglutamate is an intermediate in the deamination of amino acid, histidine. Folate is the cofactor required to convert for formiminoglutamate to glutamate.

A deficiency of Folate can lead to

inhibition of DNA synthesis, impaired methylation, cell division and alterations in protein synthesis. Elevations in urine have been used to measure folate deficiency for many years.

Oxidative Damage/Detoxification Comment

p-HYDROXYPHENYL-LACTATE (PHPA) ELEVATED:

4-Hydroxyphenyllactate is a tyrosine metabolite. Microbial hydroxyphenyllactate is likely derived from phenolic or polyphenolic compounds in the diet. Bifidobacteria and lactobacilli produce considerable amounts of phenyllactic and p-hydroxyphenyllactic acids. 4-hydroxyphenyllactic acid is often used to help diagnose rare genetic metabolic disorders.

4-Hydroxyphenyllactic acid can sometimes be also slightly elevated in other conditions or due to intake of tyrosine-rich foods.

Bacterial Dysbiosis Comment

PHENYLPROPIONATE ELEVATED:

Mild elevations in phenylpropionate, parahydroxybenzoate, and p-hydroxyphenylacetate may serve as indicators of potential microbial overgrowth. Consider implementing treatment for dysbiosis, dietary modifications, mucosal support, and the use of prebiotics and probiotics.

DHPPA ELEVATED:

Unbalanced microbial growth patterns are indicative of dysbiosis, which may be influenced by dietary changes, fasting, or the use of probiotics, prebiotics, and antibiotics. Elevated levels may necessitate a microbiome assessment to evaluate microbial overgrowth and guide appropriate interventions

Nutritional Markers Comment

8-HYDROXY-2-DEOXYGUANOSINE (80HdG) ELEVATED:

8-Hydroxy-2-deoxyguanosine is a marker of oxidative damage to guanine of DNA.8-Hydroxy-2-deoxyguanosine is associated with increased oxidative stress and may indicate a strong need for antioxidants.

Higher levels of 8-hydroxy-2-deoxyguanosine could idicate possible oxidative damage.

Consider: Supplementation with antioxidants such as vitamin C, E, N-acetyl cysteine, lipoate.

Methodology

Enzyme-Linked Immunosorbent Assay (ELISA), Liquid Chromatography-Mass Spectrometry (LC-MS/MS/MS), Automated Chemistry/Immunochemistry, Gas Chromatography-MS (GC/MS)